Ê®´óÕý¹æÍø¶ÄÍøÖ·-Íø¶Ä×îºÃ×î´óƽ̨

ѧÊõ¶¯Ì¬

  •  Ñ§Êõ¶¯Ì¬ 

ѧÊõ±¨¸æ-Chaotic properties of coupled wave equations

2021-08-26   ÉóºËÈË£º

±¨¸æÈË£º·ëÕ×Éú ½ÌÊÚ

Ö÷³ÖÈË£ºÕÅÏþÓ±

ʱ  ¼ä£º2021.08.11 10:00-11:00

µØ  µã£ºTencent»áÒéID: 400944520

Ö÷°ìµ¥Î»£º³¤´º´óѧÀíѧԺ

±¨¸æÈ˸ſö£º·ëÕ×Éú£¬ÃÀ¹úµÂ¿ËÈøË¹´óѧRGV·ÖУÊýѧÓëͳ¼ÆÑ§ÔºÖÕÉí½ÌÊÚ£¬Ö÷ÒªÑо¿·½ÏòÓзÇÏßÐÔ·ÖÎö,·ÖÖ§ºÍ»ìãçÀíÂÛ,ÊýѧÎïÀíÎÊÌâ,ÊýÖµ¼ÆËãºÍÉúÎïÊýѧµÈ¡£ÔøÓÚ2015ÄêºÍ2021ÄêÁ½¶È»ñµÃµÂ¿ËÈøË¹´óѧ½Ü³ö³É¾Í½±¡£

¹Ûµã×ÛÊö£ºIn this talk, we consider the one-, two- and three-dimensional wave equation with van der Pol type conditions. The symmetric nonlinearities of van der Pol type are proposed at the two boundary endpoints, which can cause the energy of the system to rise and fall within certain bounds. Qualitative and numerical techniques are developed to tackle the cubic nonlinearities and the chaotic regime is determined. Numerical simulations and visualizations of chaotic vibrations are illustrated by computer graphics.

¡¾¹Ø±Õ´°¿Ú¡¿
ndosvorbghn

Ê®´óÕý¹æÍø¶ÄÍøÖ·|Íø¶Ä×îºÃ×î´óƽ̨

XML µØÍ¼ | Sitemap µØÍ¼