±¨¸æÈË£ºÍõÏþ¹â
Ö÷³ÖÈË£ºÑÏ ¶¬
ʱ ¼ä£º2021Äê6ÔÂ22ÈÕÉÏÎç9£º30
µØ µã£º×ÛºÏÂ¥BÇø1306
Ö÷°ìµ¥Î»£º³¤´º´óѧÀíѧԺ
±¨¸æÈ˸ſö£ºÍõÏþ¹â£¬Õã½´óѧ½ÌÊÚ£¬³¤ÆÚ´ÓÊÂÁ¿×ÓÐÅÏ¢ÂÛºÍÁ¿×ÓÎïÀí»ù´¡ÎÊÌâµÄÑо¿£¬Í¬Ê±ÔÚÁ¿×Ó¹âѧºÍÄý¾Û̬ÀíÂÛÖÐÒ²½øÐÐÁËһϵÁеŤ×÷£¬ÔÚ¹úÄÚÍâѧÊõ¿¯ÎïÉϹ²·¢±íSCIÊÕ¼ÂÛÎÄ150ƪ£¬ÂÛÎĹ²±»SCIËûÒý5000Óà´Î¡£2001Äê·¢±íÔÚ¡¶ÎïÀíÆÀÂÛA¡·ÉϹØÓÚ´ÅÐÔϵͳº£É±¤XYÄ£ÐÍÖÐÁ¿×Ó¾À²øÌ¬µÄÑо¿±»SCIµ¥ÆªÒýÓÃ600´Î£¬Êܵ½Á¿×ÓÐÅÏ¢ºÍÄý¾Û̬Á½¸öÁìÓòÑо¿ÈËÔ±¸ß¶ÈÖØÊÓ£¬SCIÒýÓôÎÊý³¬¹ý100´ÎµÄÂÛÎĹ²ÓÐ14ƪ¡£2011ÄêPhysics ReportsÉÏ·¢±í×ÛÊöÐÔÂÛÎÄ£¬Á¿×Ó×ÔÐýѹËõ£¬ÏµÍ³ÆÀÊöÁËÕâ¸ö·½ÏòµÄ×îнøÕ¹£¨±»ÒýÓÃ300´Î£©¡£2010Äê»ñµÃ¹ú¼Ò»ù½ðί½Ü³öÇàÄê¿ÆÑ§»ù½ð×ÊÖú£¬¹úÎñÔºÌØÊâ½òÌù»ñµÃÕß¡£
¹Ûµã×ÛÊö£ºThe quantum multiparameter estimation is very different from the classical multiparameter estimation due to Heisenberg¡¯s uncertainty principle in quantum mechanics. When the optimal measurements for different parameters are incompatible, they cannot be jointly performed. We find a correspondence relationship between the inaccuracy of a measurement for estimating the unknown parameter with the measurement error in the context of measurement uncertainty relations. Taking this correspondence relationship as a bridge, we incorporate Heisenberg¡¯s uncertainty principle into quantum multiparameter estimation by giving a trade-off relation between the measurement inaccuracies for estimating different parameters. For pure quantum states, this trade-off relation is tight, so it can reveal the true quantum limits on individual estimation errors in such cases. We apply our approach to derive the trade-off between attainable errors of estimating the real and imaginary parts of a complex signal encoded in coherent states and obtain the joint measurements attaining the trade-off relation. We also show that our approach can be readily used to derive the trade-off between the errors of jointly estimating the phase shift and phase diffusion without explicitly parametrizing quantum measurements.