±¨ ¸æ ÈË£º¼¾´ºÑà ¸±½ÌÊÚ
Ö÷ ³Ö ÈË£ºÕÅÏþÓ±
ʱ ¼ä£º2019Äê9ÔÂ17ÈÕ 10£º00-11£º00
µØ µã£ºµÚÈý½Ìѧ¥ÎåÂ¥´óÊý¾ÝʵÑéÊÒ
Ö÷°ìµ¥Î»£ºÀíѧԺ
±¨¸æÈ˸ſö£º¼¾´ºÑ࣬³£ÊìÀí¹¤Ñ§Ôº£¬ÊýѧÓëͳ¼ÆÑ§Ôº£¬¸±½ÌÊÚ¡£Ö÷Òª´ÓÊÂËæ»ú΢·Ö·½³ÌµÄÀíÂÛ¼°Ó¦ÓÃÑо¿¹¤×÷£¬ÏȺóÖ÷³Ö¹ú¼Ò×ÔÈ»¿ÆÑ§»ù½ð¡ª¡ªÇàÄê»ù½ðºÍÌìÔª»ù½ð¸÷1ÏÖ÷³Ö½ËÕÊ¡×ÔÈ»¿ÆÑ§»ù½ð¡ª¡ªÇàÄê»ù½ð1Ï»ñÅú²©Ê¿ºóÃæÉÏ×ÊÖúºÍÌØ±ð×ÊÖú¡£ÔÚ¹úÄÚÍ⿯ÎïÉÏ·¢±íSCI¼ìË÷ÂÛÎÄ20ÓàÆª¡£
¹Ûµã×ÛÊö£ºWe study a kind of better recurrence than Kolmogorov¡¯s one: periodicity recurrence, which corresponds periodic solutions in distribution for stochastic differential equations. On the basis of technique of upper and lower solutions and comparison principle, we obtain the existence of periodic solutions in distribution for stochastic differential equations. Hence this provides an effective method how to study the periodicity of stochastic systems by analyzing deterministic ones. We also illustrate our results.